organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-{1-[2,8-Bis(trifluoromethyl)quinolin-4yl]-3,5,6,7,8,8a-hexahydro-1*H*-1,3oxazolo[3,4-a]pyridin-3-yl}phenol

Raoni S. B. Gonçalves,^{a,b} Carlos R. Kaiser,^b Marcus V. N. de Souza,^a James L. Wardell,^c‡ Solange M. S. V. Wardell^d and Edward R. T. Tiekink^e*

^aFundação Oswaldo Cruz, Instituto de Tecnologia, em Fármacos–Farmanguinhos, R. Sizenando Nabuco, 100, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil,
^bDepartamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68563, 21945-970 Rio de Janeiro, Brazil, ^cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, ^dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, and ^eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 6 June 2011; accepted 9 June 2011

Key indicators: single-crystal X-ray study; T = 120 K; mean σ (C–C) = 0.004 Å; R factor = 0.035; wR factor = 0.082; data-to-parameter ratio = 8.6.

In the title mefloquine–oxazolidine derivative, $C_{24}H_{20}F_6N_2O_2$, the oxazoline ring adopts an envelope conformation (the flap atom is N) and the piperidine ring has a chair conformation. The oxazoline and benzene residues lie away from the C_6 ring of the quinoline group and, to a first approximation, to one side of the plane through the ten atoms (r.m.s. deviation = 0.025 Å). An intramolecular O–H···N(piperidine) hydrogen bond is present. The crystal packing features C–H···O, C– H···F and C–H··· π (hydroxybenzene) interactions.

Related literature

For background to the anti-mycobacterial activities of quinoline derivatives related to mefloquine, see: Gonçalves *et al.* (2010). For additional geometric analysis, see: Cremer & Pople (1975); Spek (2009).

V = 8783.5 (5) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.16 \text{ mm}$

13970 measured reflections

2660 independent reflections

2519 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 0.13 \text{ mm}^-$

T = 120 K

 $R_{\rm int} = 0.043$

1 restraint

 $\Delta \rho_{\rm max} = 0.20 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$

Z = 16

Experimental

Crystal data $C_{24}H_{20}F_6N_2O_2$ $M_r = 482.42$ Orthorhombic, *Fdd2* a = 27.2766 (11) Å b = 34.1005 (9) Å c = 9.4431 (2) Å

Data collection

Enraf–Nonius KappaCCD diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2007) $T_{\rm min} = 0.799, T_{\rm max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.082$ S = 1.102660 reflections 308 parameters

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the benzene ring C19-C24.

$\overline{D-\mathrm{H}\cdots A}$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O2-H2o\cdots N2$	0.84	1.93	2.672 (3)	146
$C6-H6\cdots O1^{i}$	0.95	2.52	3.384 (3)	152
$C16-H16B\cdots F4^{ii}$	0.99	2.47	3.043 (3)	116
$C18-H18B\cdots F1^{ii}$	0.99	2.54	3.275 (3)	131
$C15-H15B\cdots Cg1^{iii}$	0.99	2.93	3.792 (3)	146
Symmetry codes: (i) $x - \frac{1}{4}, -y + \frac{7}{4}, z + \frac{1}{4}.$	-x + 2, -	$y + \frac{3}{2}, z + \frac{1}{2};$	(ii) $x + \frac{1}{4}, -y + \frac{1}{4}$	$\frac{7}{4}, z + \frac{3}{4};$ (iii)

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997) and *COLLECT*; data reduction: *DENZO* and *COLLECT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assis-

[‡] Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

tance of the staff there are gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5905).

References

Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Cremer, D. & Pople, J. A. (1975). *J. Am. Chem. Soc.* **97**, 1354–1358. Farrugia, L. J. (1997). *J. Appl. Cryst.* **30**, 565.

- Gonçalves, R. S. B., Kaiser, C. R., Lourenço, M. C. S., de Souza, M. V. N., Wardell, J. L., Wardell, S. M. S. V. & da Silva, A. D. (2010). *Eur. J. Med. Chem.* 45, 6095–6100.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

Acta Cryst. (2011). E67, o1656-o1657 [doi:10.1107/S1600536811022379]

2-{1-[2,8-Bis(trifluoromethyl)quinolin-4-yl]-3,5,6,7,8,8a-hexahydro-1*H*-1,3-oxazolo[3,4-*a*]pyridin-3-yl}phenol

R. S. B. Gonçalves, C. R. Kaiser, M. V. N. de Souza, J. L. Wardell, S. M. S. V. Wardell and E. R. T. Tiekink

Comment

A recent publication reported the synthesis and anti-tubercular activity of mefloquine-oxazolidine derivatives (Gonçalves *et al.*, 2010). Subsequently, crystals became available for one of the derivatives, the title compound (I), allowing full characterization by X-ray crystallography.

In (I), Fig. 1, the oxazoline ring adopts an envelope conformation with the flap atom being N2 as seen in the puckering parameters Q(2) = 0.409 (2) Å and $\varphi_2 = 100.6$ (3) ° (Cremer & Pople, 1975). The piperidinyl ring is close to a chair conformation with puckering parameters: Q(2) = 0.060 (3) Å and Q(3) = -0.596 (3) Å, and amplitudes: Q = 0.599 (3) Å, $\theta = 174.6$ (3) ° and $\varphi = 214$ (3) ° (Cremer & Pople, 1975). The 10 non-hydrogen atom comprising the quinoline residue are co-planar with the r.m.s. deviation being 0.025 Å. With reference to this plane, the oxazolidine residue, with the exception of the O1 atom, lies to one side of the plane. By contrast, the benzene ring is somewhat splayed [forming a dihedral angle of 50.34 (11) °] with half the ring above and the other half below the plane through the quinoline atoms. The oxazolidine and benzene ring are directed away from the C₆ ring of the quinoline residue, and the hydroxyl group is orientated to allow the formation of a O—H…N hydrogen bond, Table 1.

Molecules are stabilized in the crystal structure by a combination of C—H···O, C—H···F and C—H··· π (hydroxybenzene) interactions, Table 1 and Fig. 2.

Experimental

The compound was prepared as reported in the literature (Gonçalves *et al.*, 2010) and was recrystallized from its ethanol solution for the structural study.

Refinement

The C-bound H atoms were geometrically placed (C—H = 0.95-1.00 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$. The O-bound atom was treated similarly with O—H = 0.84 Å, and with $U_{iso}(H) = 1.5U_{eq}(O)$. In the absence of significant anomalous scattering effects, 2163 Friedel pairs were averaged in the final refinement. The stereochemistries at the chiral centres were chosen to match the starting mefloquine reagent (Gonçalves *et al.*, 2010). Figures

Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 50% probability level.

Fig. 2. A view in projection down the *c* axis of the unit-cell contents of (I) with the C—H···O, C—H···F and C—H··· π (hydroxybenzene) interactions shown as orange blue and purple dashed lines, respectively.

2-{1-[2,8-Bis(trifluoromethyl)quinolin-4-yl]-3,5,6,7,8,8a-hexahydro-1H-1,3-oxazolo[3,4-a]pyridin-3-yl}phenol

$C_{24}H_{20}F_6N_2O_2$	F(000) = 3968
$M_r = 482.42$	$D_{\rm x} = 1.459 {\rm ~Mg~m^{-3}}$
Orthorhombic, <i>Fdd</i> 2	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: F 2 -2d	Cell parameters from 11047 reflections
a = 27.2766 (11) Å	$\theta = 2.9 - 27.5^{\circ}$
b = 34.1005 (9) Å	$\mu = 0.13 \text{ mm}^{-1}$
c = 9.4431 (2) Å	T = 120 K
$V = 8783.5 (5) Å^3$	Block, colourless
Z = 16	$0.40\times0.20\times0.16~mm$

Data collection

Enraf–Nonius KappaCCD diffractometer	2660 independent reflections
Radiation source: Enraf-Nonius FR591 rotating an- ode	2519 reflections with $I > 2\sigma(I)$
10 cm confocal mirrors	$R_{\rm int} = 0.043$
Detector resolution: 9.091 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
ϕ and ω scans	$h = -35 \rightarrow 32$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2007)	$k = -44 \rightarrow 32$
$T_{\min} = 0.799, T_{\max} = 1.000$	$l = -11 \rightarrow 12$
13970 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained
$wR(F^2) = 0.082$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0295P)^{2} + 15.365P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
S = 1.10	$(\Delta/\sigma)_{\text{max}} = 0.001$
2660 reflections	$\Delta \rho_{max} = 0.20 \text{ e } \text{\AA}^{-3}$
308 parameters	$\Delta \rho_{\rm min} = -0.24 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: nd
Primary atom site location: structure-invariant direct methods	

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
F1	0.98349 (6)	0.85851 (4)	0.25475 (17)	0.0325 (3)
F2	1.03760 (5)	0.81329 (5)	0.22731 (16)	0.0352 (4)
F3	0.96194 (6)	0.80141 (5)	0.18235 (15)	0.0332 (4)
F4	0.83400 (6)	0.81192 (5)	0.47423 (18)	0.0387 (4)
F5	0.85056 (6)	0.75173 (5)	0.4262 (2)	0.0435 (4)
F6	0.79918 (6)	0.76574 (6)	0.59082 (19)	0.0433 (4)
O1	1.10450 (6)	0.78733 (5)	0.67372 (18)	0.0214 (3)
O2	1.10905 (7)	0.87646 (6)	0.4756 (2)	0.0331 (4)
H2O	1.0968	0.8720	0.5556	0.050*
N1	0.93890 (7)	0.79834 (6)	0.4583 (2)	0.0203 (4)
N2	1.10727 (7)	0.85110 (6)	0.7433 (2)	0.0226 (4)
C1	0.98410 (8)	0.80770 (6)	0.4242 (2)	0.0187 (4)
C2	1.02460 (8)	0.80730 (6)	0.5156 (2)	0.0198 (4)
H2	1.0563	0.8139	0.4816	0.024*
C3	1.01759 (8)	0.79725 (6)	0.6548 (2)	0.0176 (4)
C4	0.96894 (8)	0.78816 (6)	0.7003 (2)	0.0189 (4)
C5	0.95739 (9)	0.77823 (7)	0.8426 (3)	0.0214 (5)

H5	0.9824	0.7786	0.9125	0.026*
C6	0.91067 (9)	0.76812 (7)	0.8798 (3)	0.0233 (5)
H6	0.9034	0.7616	0.9753	0.028*
C7	0.87321 (9)	0.76741 (7)	0.7767 (3)	0.0242 (5)
H7	0.8409	0.7600	0.8033	0.029*
C8	0.88277 (8)	0.77726 (7)	0.6394 (3)	0.0212 (5)
C9	0.93106 (8)	0.78838 (6)	0.5973 (2)	0.0186 (4)
C10	0.99188 (8)	0.82002 (7)	0.2718 (3)	0.0236 (5)
C11	0.84193 (9)	0.77694 (8)	0.5328 (3)	0.0273 (5)
C12	1.06091 (8)	0.79426 (7)	0.7548 (2)	0.0201 (4)
H12	1.0556	0.7719	0.8218	0.024*
C13	1.13849 (8)	0.81902 (7)	0.6950 (3)	0.0231 (5)
H13	1.1626	0.8119	0.7707	0.028*
C14	1.07232 (8)	0.83156 (7)	0.8391 (3)	0.0224 (5)
H14	1.0902	0.8239	0.9273	0.027*
C15	1.03185 (9)	0.85983 (7)	0.8790 (3)	0.0257 (5)
H15A	1.0080	0.8467	0.9422	0.031*
H15B	1.0143	0.8687	0.7930	0.031*
C16	1.05498 (10)	0.89492 (8)	0.9549 (3)	0.0313 (6)
H16A	1.0294	0.9147	0.9750	0.038*
H16B	1.0690	0.8862	1.0463	0.038*
C17	1.09526 (10)	0.91343 (8)	0.8645 (3)	0.0341 (6)
H17A	1.0803	0.9258	0.7801	0.041*
H17B	1.1119	0.9342	0.9198	0.041*
C18	1.13303 (9)	0.88317 (8)	0.8172 (3)	0.0310 (6)
H18A	1.1572	0.8955	0.7528	0.037*
H18B	1.1508	0.8727	0.9004	0.037*
C19	1.16494 (9)	0.82626 (7)	0.5575 (3)	0.0262 (5)
C20	1.14874 (9)	0.85282 (7)	0.4556 (3)	0.0287 (5)
C21	1.17304 (11)	0.85539 (8)	0.3246 (3)	0.0372 (7)
H21	1.1618	0.8734	0.2550	0.045*
C22	1.21281 (12)	0.83207 (9)	0.2970 (4)	0.0431 (7)
H22	1.2291	0.8341	0.2083	0.052*
C23	1.22951 (11)	0.80566 (9)	0.3970 (4)	0.0417 (7)
H23	1.2570	0.7895	0.3770	0.050*
C24	1.20596 (10)	0.80299 (8)	0.5263 (3)	0.0331 (6)
H24	1.2178	0.7851	0.5953	0.040*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.0439 (9)	0.0275 (8)	0.0262 (8)	0.0023 (6)	-0.0006 (7)	0.0088 (6)
F2	0.0274 (7)	0.0554 (10)	0.0227 (8)	0.0085 (7)	0.0077 (6)	0.0121 (7)
F3	0.0377 (9)	0.0460 (9)	0.0160 (7)	-0.0085 (7)	-0.0028 (6)	-0.0014 (7)
F4	0.0344 (8)	0.0471 (9)	0.0347 (9)	0.0040 (7)	-0.0083 (7)	0.0118 (8)
F5	0.0339 (8)	0.0578 (11)	0.0387 (9)	-0.0042 (8)	-0.0057 (8)	-0.0217 (9)
F6	0.0202 (7)	0.0723 (12)	0.0373 (10)	-0.0094 (7)	0.0010 (7)	0.0083 (9)
01	0.0193 (8)	0.0214 (7)	0.0236 (8)	-0.0016 (6)	-0.0005 (7)	-0.0004 (7)

O2	0.0363 (10)	0.0313 (9)	0.0316 (10)	0.0013 (8)	0.0036 (8)	0.0049 (8)
N1	0.0217 (9)	0.0222 (9)	0.0170 (10)	-0.0002 (7)	0.0003 (8)	-0.0004 (7)
N2	0.0221 (9)	0.0236 (9)	0.0222 (10)	-0.0038 (7)	-0.0015 (8)	-0.0026 (8)
C1	0.0217 (11)	0.0182 (10)	0.0162 (10)	0.0003 (8)	0.0000 (9)	0.0001 (8)
C2	0.0211 (10)	0.0186 (10)	0.0196 (11)	-0.0006 (8)	0.0007 (9)	0.0009 (9)
C3	0.0197 (10)	0.0155 (9)	0.0175 (11)	-0.0002 (8)	-0.0019 (8)	-0.0010 (8)
C4	0.0218 (10)	0.0166 (9)	0.0184 (11)	0.0000 (8)	0.0015 (9)	0.0014 (9)
C5	0.0266 (12)	0.0213 (11)	0.0164 (11)	0.0000 (9)	0.0002 (9)	0.0009 (9)
C6	0.0270 (12)	0.0240 (11)	0.0188 (11)	0.0036 (9)	0.0044 (9)	0.0026 (9)
C7	0.0213 (11)	0.0238 (11)	0.0275 (12)	0.0017 (9)	0.0054 (10)	0.0017 (10)
C8	0.0205 (11)	0.0217 (11)	0.0215 (11)	-0.0003 (9)	0.0005 (9)	-0.0002 (9)
C9	0.0205 (10)	0.0173 (10)	0.0180 (11)	-0.0002 (8)	0.0013 (9)	-0.0008 (8)
C10	0.0233 (11)	0.0278 (12)	0.0197 (11)	-0.0008 (9)	-0.0010 (10)	0.0005 (10)
C11	0.0210 (11)	0.0351 (13)	0.0257 (12)	-0.0012 (10)	0.0014 (10)	-0.0002 (10)
C12	0.0205 (10)	0.0209 (10)	0.0189 (11)	-0.0018 (8)	-0.0006 (9)	0.0014 (9)
C13	0.0192 (10)	0.0248 (11)	0.0252 (13)	-0.0023 (8)	-0.0043 (9)	0.0010 (9)
C14	0.0223 (11)	0.0273 (11)	0.0175 (11)	-0.0033 (9)	-0.0035 (9)	-0.0019 (9)
C15	0.0280 (12)	0.0258 (12)	0.0232 (12)	-0.0033 (9)	0.0013 (10)	-0.0053 (10)
C16	0.0319 (13)	0.0308 (13)	0.0311 (14)	-0.0035 (10)	0.0018 (11)	-0.0109 (11)
C17	0.0362 (14)	0.0282 (13)	0.0379 (15)	-0.0092 (10)	0.0037 (12)	-0.0117 (11)
C18	0.0281 (12)	0.0311 (13)	0.0338 (14)	-0.0078 (10)	-0.0015 (11)	-0.0068 (11)
C19	0.0237 (12)	0.0261 (12)	0.0287 (13)	-0.0051 (9)	0.0027 (10)	-0.0030 (10)
C20	0.0310 (13)	0.0243 (11)	0.0307 (14)	-0.0067 (9)	0.0035 (11)	-0.0017 (10)
C21	0.0514 (17)	0.0286 (13)	0.0316 (15)	-0.0107 (12)	0.0096 (13)	0.0003 (12)
C22	0.0508 (17)	0.0393 (16)	0.0391 (17)	-0.0136 (13)	0.0220 (14)	-0.0087 (13)
C23	0.0344 (15)	0.0373 (15)	0.0535 (19)	-0.0066 (13)	0.0163 (14)	-0.0119 (14)
C24	0.0265 (12)	0.0285 (13)	0.0444 (16)	-0.0030 (10)	0.0034 (12)	-0.0038 (12)

Geometric parameters (Å, °)

F1—C10	1.342 (3)	C8—C9	1.427 (3)
F2—C10	1.336 (3)	C8—C11	1.502 (3)
F3—C10	1.336 (3)	C12—C14	1.532 (3)
F4—C11	1.332 (3)	С12—Н12	1.0000
F5—C11	1.344 (3)	C13—C19	1.506 (3)
F6—C11	1.344 (3)	С13—Н13	1.0000
O1—C12	1.434 (3)	C14—C15	1.514 (3)
O1—C13	1.438 (3)	C14—H14	1.0000
O2—C20	1.363 (3)	C15—C16	1.530 (3)
O2—H2O	0.8400	C15—H15A	0.9900
N1—C1	1.314 (3)	C15—H15B	0.9900
N1—C9	1.372 (3)	C16—C17	1.528 (4)
N2—C13	1.460 (3)	C16—H16A	0.9900
N2	1.473 (3)	C16—H16B	0.9900
N2	1.475 (3)	C17—C18	1.525 (4)
C1—C2	1.401 (3)	С17—Н17А	0.9900
C1—C10	1.514 (3)	С17—Н17В	0.9900
C2—C3	1.372 (3)	C18—H18A	0.9900
С2—Н2	0.9500	C18—H18B	0.9900

C3—C4	1.429 (3)	C19—C20	1.393 (4)
C3—C12	1.516 (3)	C19—C24	1.403 (4)
C4—C9	1.419 (3)	C20—C21	1.406 (4)
C4—C5	1.421 (3)	C21—C22	1.370 (4)
C5—C6	1.366 (3)	C21—H21	0.9500
С5—Н5	0.9500	C22—C23	1.382 (5)
C6—C7	1.411 (3)	C22—H22	0.9500
С6—Н6	0.9500	C23—C24	1.382 (4)
С7—С8	1.364 (3)	С23—Н23	0.9500
С7—Н7	0.9500	C24—H24	0.9500
C12—O1—C13	109.65 (17)	N2—C13—C19	115.2 (2)
С20—О2—Н2О	109.5	O1—C13—H13	110.0
C1—N1—C9	116.2 (2)	N2—C13—H13	110.0
C13—N2—C14	103.32 (18)	С19—С13—Н13	110.0
C13—N2—C18	115.18 (19)	N2-C14-C15	109.69 (19)
C14—N2—C18	110.72 (19)	N2-C14-C12	100.86 (18)
N1—C1—C2	125.9 (2)	C15—C14—C12	120.68 (19)
N1—C1—C10	115.6 (2)	N2—C14—H14	108.3
C2-C1-C10	118.5 (2)	C15—C14—H14	108.3
C3—C2—C1	118.8 (2)	C12—C14—H14	108.3
С3—С2—Н2	120.6	C14—C15—C16	108.3 (2)
C1—C2—H2	120.6	C14—C15—H15A	110.0
C2—C3—C4	118.1 (2)	C16—C15—H15A	110.0
C2—C3—C12	120.3 (2)	C14—C15—H15B	110.0
C4—C3—C12	121.48 (19)	C16—C15—H15B	110.0
C9—C4—C5	119.2 (2)	H15A—C15—H15B	108.4
C9—C4—C3	118.0 (2)	C17—C16—C15	111.0 (2)
C5—C4—C3	122.8 (2)	С17—С16—Н16А	109.4
C6—C5—C4	120.7 (2)	C15—C16—H16A	109.4
С6—С5—Н5	119.7	C17—C16—H16B	109.4
С4—С5—Н5	119.7	C15—C16—H16B	109.4
C5—C6—C7	120.1 (2)	H16A—C16—H16B	108.0
С5—С6—Н6	119.9	C18—C17—C16	111.7 (2)
С7—С6—Н6	119.9	C18—C17—H17A	109.3
C8—C7—C6	120.8 (2)	С16—С17—Н17А	109.3
С8—С7—Н7	119.6	С18—С17—Н17В	109.3
С6—С7—Н7	119.6	С16—С17—Н17В	109.3
С7—С8—С9	120.4 (2)	H17A—C17—H17B	107.9
C7—C8—C11	119.6 (2)	N2-C18-C17	108.6 (2)
C9—C8—C11	120.0 (2)	N2—C18—H18A	110.0
N1	122.9 (2)	C17—C18—H18A	110.0
N1—C9—C8	118.4 (2)	N2-C18-H18B	110.0
C4—C9—C8	118.7 (2)	C17—C18—H18B	110.0
F3—C10—F2	106.9 (2)	H18A—C18—H18B	108.4
F3—C10—F1	106.50 (19)	C20—C19—C24	118.4 (2)
F2	106.81 (19)	C20—C19—C13	123.4 (2)
F3—C10—C1	112.58 (19)	C24—C19—C13	118.1 (2)
F2-C10-C1	112.49 (19)	O2—C20—C19	122.7 (2)
F1-C10-C1	111.2 (2)	O2—C20—C21	117.4 (2)

F4—C11—F6	106.4 (2)	C19—C20—C21	119.9 (2)
F4—C11—F5	106.9 (2)	C22—C21—C20	120.3 (3)
F6—C11—F5	106.0 (2)	C22—C21—H21	119.9
F4—C11—C8	113.1 (2)	C20—C21—H21	119.9
F6—C11—C8	111.8 (2)	C21—C22—C23	120.6 (3)
F5—C11—C8	112.1 (2)	C21—C22—H22	119.7
O1—C12—C3	108.97 (18)	С23—С22—Н22	119.7
O1—C12—C14	104.21 (17)	C22—C23—C24	119.5 (3)
C3—C12—C14	115.21 (19)	С22—С23—Н23	120.2
O1—C12—H12	109.4	С24—С23—Н23	120.2
C3—C12—H12	109.4	C23—C24—C19	121.2 (3)
C14—C12—H12	109.4	C23—C24—H24	119.4
O1—C13—N2	103.34 (18)	C19—C24—H24	119.4
O1—C13—C19	108.15 (19)		
C9-N1-C1-C2	19(3)	C2 - C3 - C12 - O1	-232(3)
C9 - N1 - C1 - C10	-177.92(19)	C4 - C3 - C12 - O1	154.04(19)
N1-C1-C2-C3	-17(3)	$C_2 - C_3 - C_{12} - C_{14}$	93 5 (3)
$C_{10} - C_{1} - C_{2} - C_{3}$	178 2 (2)	C4 - C3 - C12 - C14	-893(3)
C1 - C2 - C3 - C4	-0.8(3)	C12 - 01 - C13 - N2	-21.6(2)
C1 - C2 - C3 - C12	176 54 (19)	$C_{12} = O_1 = C_{13} = C_{19}$	$-144\ 21\ (19)$
$C_2 = C_3 = C_4 = C_9$	27(3)	C12 = 01 = 013 = 013	40.1.(2)
$C_{12} - C_{3} - C_{4} - C_{9}$	-1746(2)	C18 - N2 - C13 - O1	160.9(2)
$C_{2}^{2} - C_{3}^{2} - C_{4}^{2} - C_{5}^{2}$	-1786(2)	$C_{14} = N_{2} = C_{13} = C_{19}$	157.82(19)
$C_{12} - C_{3} - C_{4} - C_{5}$	41(3)	C18 - N2 - C13 - C19	-813(3)
$C_{2} = C_{2} = C_{2} = C_{2}$	15(3)	C13 - N2 - C14 - C15	-17042(19)
C_{3} C_{4} C_{5} C_{6}	-1772(2)	C18 - N2 - C14 - C15	65 7 (2)
C4-C5-C6-C7	0.0(4)	C13 - N2 - C14 - C12	-421(2)
$C_{5} - C_{6} - C_{7} - C_{8}$	-0.9(4)	C18 - N2 - C14 - C12	-165.92(19)
C6-C7-C8-C9	0.2.(4)	01-C12-C14-N2	28.6 (2)
C6-C7-C8-C11	-1789(2)	C_{3} C_{12} C_{14} N_{2}	-90.8(2)
C1 - N1 - C9 - C4	0.3(3)	01 - C12 - C14 - C15	149 4 (2)
C1 - N1 - C9 - C8	-1789(2)	C_{3} C_{12} C_{14} C_{15}	30.1.(3)
C5-C4-C9-N1	178.7 (2)	N2-C14-C15-C16	-60.6(3)
C_{3} — C_{4} — C_{9} — N_{1}	-2.6(3)	C12-C14-C15-C16	-177.0(2)
$C_{5} - C_{4} - C_{9} - C_{8}$	-2.1(3)	C14-C15-C16-C17	54 6 (3)
C_{3} C_{4} C_{9} C_{8}	176 6 (2)	C_{15} C_{16} C_{17} C_{18}	-531(3)
C7 - C8 - C9 - N1	-1795(2)	C13 - N2 - C18 - C17	-1782(2)
$C_{11} - C_{8} - C_{9} - N_{1}$	-0.4(3)	C14 - N2 - C18 - C17	-61.5(3)
C7-C8-C9-C4	13(3)	C16—C17—C18—N2	55 2 (3)
C11-C8-C9-C4	-179.6(2)	01-C13-C19-C20	91.1 (3)
N1-C1-C10-F3	-32.8(3)	N2-C13-C19-C20	-23.9(3)
C2-C1-C10-F3	147.4 (2)	O1—C13—C19—C24	-84.1 (3)
N1—C1—C10—F2	-153.6 (2)	N2—C13—C19—C24	160.9 (2)
C2-C1-C10-F2	26.6 (3)	C24—C19—C20—O2	179.5 (2)
N1—C1—C10—F1	86.7 (2)	C13—C19—C20—O2	4.3 (4)
C2-C1-C10-F1	-93.2 (2)	C24—C19—C20—C21	0.8 (4)
C7—C8—C11—F4	119.2 (3)	C13—C19—C20—C21	-174.4 (2)
C9—C8—C11—F4	-59.9 (3)	02-C20-C21-C22	-179.1 (3)
C7—C8—C11—F6	-0.9 (3)	C19—C20—C21—C22	-0.4 (4)
	· · · · ·		

C9—C8—C11—F6	179.9 (2)	C20—C21—C22—C23	0.2 (5)
C7—C8—C11—F5	-119.8 (3)	C21—C22—C23—C24	-0.4 (5)
C9—C8—C11—F5	61.0 (3)	C22—C23—C24—C19	0.8 (4)
C13—O1—C12—C3	118.85 (19)	C20-C19-C24-C23	-1.0 (4)
C13—O1—C12—C14	-4.6 (2)	C13—C19—C24—C23	174.4 (2)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the benzene ring C19–C24.

D—H··· A
146
152
116
131
146

Symmetry codes: (i) -x+2, -y+3/2, z+1/2; (ii) x+1/4, -y+7/4, z+3/4; (iii) x-1/4, -y+7/4, z+1/4.

Fig. 1

Fig. 2

